A robust nonconforming H2-element

نویسندگان

  • Trygve K. Nilssen
  • Xue-Cheng Tai
  • Ragnar Winther
چکیده

Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H2-element which is H1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Framework for the A Posteriori Error Analysis of Nonconforming Finite Elements

This paper establishes a unified framework for the a posteriori error analysis of a large class of nonconforming finite element methods. The theory assures reliability and efficiency of explicit residual error estimates up to data oscillations under the conditions (H1)-(H2) and applies to several nonconforming finite elements: the Crouzeix-Raviart triangle element, the Han parallelogram element...

متن کامل

Low Order Nonconforming Expanded Characteristic- Mixed Finite Element Method for the Convection- Diffusion Problem

A low order nonconforming finite element method is proposed for the convection-diffusion equations with the expanded characteristic-mixed finite element scheme. The method is a combination of characteristic approximation to handle the convection part in time and a expanded nonconforming mixed finite element spatial approximation to deal with the diffusion part. In the process, the interpolation...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Recovery-Based Error Estimators for Interface Problems: Mixed and Nonconforming Finite Elements

In [13], we introduced and analyzed a recovery-based a posteriori error estimator for conforming linear finite element approximation to interface problems. It was shown theoretically that the estimator is robust with respect to the size of jumps provided that the distribution of coefficients is locally monotone. Numerical examples showed that this condition is unnecessary. This paper extends th...

متن کامل

Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations

We present equilibrated flux a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed finite element discretizations of the two-dimensional Poisson problem. Relying on the equilibration by the mixed finite element solution of patchwise Neumann problems, the estimates are guaranteed, locally computable, locally efficient, and robust with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001